
Microcontroller
ENGINEERING REVIEW

Volume 4

The MAXQ architecture realized:
introducing the MAXQ2000
The MAXQ™ family of microcontrollers from MAXIM®/Dallas Semiconductor are high-
performance, 16-bit RISC devices ideal for battery-powered mixed-signal applications.
Designed for reduced noise operation, the MAXQ integrates high-precision analog functions
alongside digital components, resulting in reduced chip-count solutions.

The MAXQ uses a Harvard memory map to keep data, code, and register space on separate
buses. The primary advantage of this type of memory map is flexible word lengths, allowing
system and peripheral registers to be 8 or 16 bits wide. Typical MAXQ devices have 16-bit data,
code, and register memory. Because the MAXQ instruction word is 16 bits, the microcontrollers
always have a 16-bit instruction bus. Another advantage of the Harvard architecture is that the
memory is always accessed using registers. This enables direct memory access for peripherals such
as analog-to-digital converters (ADCs) and hardware coprocessors.

The MAXQ architecture is
based on a very simple
concept: all operations are
ultimately achieved using a
simple transfer operation.
Each of the 33 total
instructions reduces to either
writing an immediate value
to a destination register/
memory location, or moving
data between registers
and/or memory locations
(Figure 1). The architectural
simplicity makes it ideal for
tool vendors to optimize
code development and use
the smallest possible
memory requirements for
most applications. In addition, each instruction in the MAXQ is processed in a single cycle, ensuring
the fastest possible code execution (1 MIPS/MHz).

Introducing the MAXQ2000

The MAXQ2000 is the first of many products in the MAXQ family. This microcontroller
integrates a 16-bit CPU with 64kB of flash memory, 2kB of SRAM, and a 4 x 36-segment LCD
controller. The on-board LCD controller generates signals for an LCD based on display memory
content. The application code sets up user-configurable options and writes to the display
memory. The LCD controller then generates the necessary segment and common signals at the
selected display frequency, so the microcontroller does not have to constantly manage the display
and directly drive the LCD. In addition, the controller supports four types of display modes.

The MAXQ uses a
Harvard memory map
to keep data, code, and
register space on
separate buses.

Figure 1. Each of the
MAXQ2000’s 33 instructions
reduces to either writing an
immediate value to a
destination register/memory
location, or moving data
between registers and/or
memory locations.

Table of Contents

The MAXQ architecture
realized: introducing the
MAXQ2000................1

Programming in the
MAXQ environment4

Accessing the functions
provided in the MAXQ
utility ROM10

An example application
using the MAXQ2000
Evaluation Kit13

Signal processing with
the MAXQ multiply-
accumulate unit (MAC)
................................16

Data
Memory

I/O

Source

IR

1:16 16:1

Instruction
Decoder

IP

DP

SP

ALU

I/O

I/O

Program
Memory

Destination

2

1) Static

2) 1/2 duty multiplexed with 1/2 bias voltages

3) 1/3 duty multiplexed with 1/3 bias voltages

4) 1/4 duty multiplexed with 1/3 bias voltages

Seventeen bytes of display memory are available for use by
the LCD controller, or for general-purpose application
storage. Another enhanced LCD feature is found in its
integrated voltage-divider resistors, which eliminate the need
for external components, and can be used for contrast
adjustment. Figure 2 shows the LCD-drive voltage con-
figuration for a static display. Each of the 36 segment pins is
configurable for general-purpose I/O when not connected to
an LCD.

The MAXQ2000 also offers five choices for the system
clock.

1) Internal ring oscillator

2) Internal high-frequency oscillator using external crystal or resonator circuit

3) External high-frequency clock signal

4) Internal 32kHz oscillator using external crystal or resonator circuit

5) External 32kHz clock signal

Multiple power-management modes (PMMs) ensure minimum current consumption. Divide-by-
256 mode allows all operations to continue as normal, but at a reduced clock rate from the high-
frequency input. For further power reduction, PMM2 mode enables the microcontroller to run from
the 32kHz clock. All operations continue as normal, but at an extremely reduced clock frequency.

Because some inputs to the microcontroller
must be executed at full speed, switchback
mode is available. Switchback mode provides
automatic exit from power management when
higher speed operation is required, such as
UART, SPI™, or external interrupts.

World-class tools

Embedded-application designs demand faster
development time. To meet this demand,
DALLAS® is providing world-class tools for
integrated development environments,
emulation tools, and complete in-circuit
emulators. For assembly language
development, a free MAXIDE can be
downloaded from the MAXIM website at
www.maxim-ic.com/microcontrollers. The
MAXIDE includes an assembler, an IDE with
codeword highlighting, support for the MAXQ

JTAG interface, and a simulator for each available MAXQ microcontroller. C development is
supported through our tools partners. IAR, with IAR Embedded Workbench®, is the first tools
provider with a complete IDE for the MAXQ (Figure 3). Other partners are working on compilers
as well as IDEs.

GNDIO

LRIG

VLCD

VLCD1

VLCD2

VADG

RADG

R

R

Figure 2. Shown here is
the LCD-drive voltage
configuration for static
display.

Figure 3. IAR Embedded
Workbench provides an
online tutorial for the
MAXQ product line.

...the MAXQ core
enables clocks only
to those circuits that
require clocking at any
instant, thus reducing
power consumption
and providing a quiet
environment optimal
for analog integration.

MAXQ2000 Features

• 16-Bit RISC Core

• Single-Cycle Execution

• 64kB Flash Memory

• 2kB Data RAM

• 16-Level Hardware Stack

• Four Common, 36-Segment
LCD Controller

• Real-Time Clock

• 16 x 16 Multiply with
40-Bit Accumulator

3

The MAXQ microcontrollers include support for JTAG emulation. Each microcontroller
integrates an emulation engine, allowing firmware development to begin on flash-based versions
of the microcontrollers in real system designs. Firmware engineers can completely design, write,
and debug their application using the real chip and application circuit. Support includes
breakpoints, which are configurable to be triggered on registers, code, or data. Background
debug executes the microcontroller at full speed. When a debug event is triggered, such as a
breakpoint, the microcontroller switches to foreground debug mode. In this mode, registers,
memory, and single-step trace mode are possible.

Conclusion

The MAXQs’ innovative single-clock-cycle execution, power-management modes, and wide
range of mixed-signal peripherals make them ideal for today’s power conscious, high-
performance applications. Now with the introduction of the MAXQ2000, you can start designing
and evaluating integrated analog-digital designs today.

MAXIM is a registered trademark of Maxim Integrated Products, Inc. All rights reserved.
DALLAS is a registered trademark of Dallas Semiconductor Corp.
MAXQ is a trademark of Maxim Integrated Products, Inc.
SPI is a trademark of Motorola, Inc.
IAR Embedded Workbench is a registered trademark of IAR Systems.

The MAXQ2000
integrates a 16-bit CPU
with 64kB of flash
memory, 2kB of SRAM,
and a 4 x 36-segment
LCD controller.

4

Programming in the MAXQ
environment
The MAXQ architecture was developed for application programmers. Each MAXQ microcontroller
includes a hardware debug engine that is tightly integrated with the microcontroller core. The first
chip in this architecture is the MAXQ2000, and this article provides examples and tips on the use of
the IAR Embedded Workbench with the MAXQ2000 Evaluation Kit.

The in-circuit debugging and program-loading features of the MAXQ2000 microcontroller
combine with IAR’s Embedded Workbench development environment to provide C or assembly-
level application development and testing. The hardware-based debug engine and bootloader of
the MAXQ2000 run over a dedicated JTAG port to allow full debugging access with minimal
impact on system resources.

In-circuit debug features

A hardware debug engine, which is tightly integrated with the microcontroller core, controls
the MAXQ2000’s debugging features. This debug engine can invoke service routines in the
on-board utility ROM to support a wide array of debugging features.

• Read access to the integrated flash program memory.

• Read/write access to the on-board data SRAM.

• Read access to the 16 x 16 stack memory.

• Read/write access to all MAXQ2000 system and peripheral registers.

• Step-by-step (trace) program execution.

• Up to four address-based breakpoints to stop program execution at a particular location in code
memory.

• Two data memory-matching breakpoints to stop program execution when a particular location
in data memory is accessed.

• Two register-based breakpoints to stop program execution when write access to a particular
system or peripheral register occurs (cannot be used simultaneously with the data memory
matching breakpoint) and the data being written to the register matches a specified value.

• Password matching function (to unlock the remaining debug functions).

All communication with the debug engine takes place over the MAXQ2000’s dedicated JTAG
Test Access Port (TAP) interface, which is compatible with the JTAG IEEE Standard 1149. This
interface consists of four signals, multiplexed with MAXQ2000 port pins as follows: TMS (Test
Mode Select)—multiplexed with P4.2; TCK (Test Clock)—multiplexed with P4.0; TDI (Test
Data In)—multiplexed with P4.1; and TDO (Test Data Out)—multiplexed with P4.3.

While the JTAG TAP port is dedicated to in-system debug and in-system programming uses, the
four port pins that carry the JTAG TAP port signals may be released for other purposes once
application development is complete. The JTAG port is active by default following reset, but
once running, the application software can deactivate the JTAG port, leaving the four associated
port pins free for other uses.

The JTAG interface and the debug engine operate asynchronously with respect to the
MAXQ2000 core. Communication over the JTAG port need not take place at the same clock rate
that the MAXQ2000 is running, although the frequency of TCK is limited to a maximum of 1/8
the system clock rate for the MAXQ2000.

The in-circuit debugging
and program-loading
features of the
MAXQ2000 micro-
controller combine with
IAR’s Embedded Work-
bench development
environment to provide
C or assembly-level
application develop-
ment and testing.

All communication with
the debug engine takes
place over the
MAXQ2000’s dedicated
JTAG TAP interface,
which is compatible
with the JTAG IEEE
Standard 1149.

5

Breakpoint settings can be read and written through the debug engine while the MAXQ2000 is
executing code. This mode is known as background mode, where the debug engine operates
independently of the CPU core.

To perform other operations such as memory and register read and write, the debug engine takes
control of the MAXQ2000 core, and switches execution to one of the debug service routines
located in the utility ROM. This mode is known as debug mode, in which the debug engine
interrupts normal program execution. The user application is suspended temporarily in these
cases and resumes execution once the debug function has been completed, in the same way that
interrupt routines are handled.

Because the JTAG TAP port is not used for application software purposes, the port pins
comprising the JTAG port can be reclaimed by the application software. All additional code
required for debugging functions is located in the utility ROM, so the only system resources
consumed by the debugging functions are a small amount of data SRAM and one level of the
program stack (used to store the return address when a debugging routine is called). The highest
19 bytes of data SRAM (addresses 0x07ED to 0x07FF) are reserved for use by the debugging
service routines. If in-circuit debugging will not be used for a particular application, these data
SRAM locations are available for application use.

Integrated flash-memory programs over JTAG

The JTAG TAP port is also used for an additional bootloader function, which is available even
if the debugging functions will not be used. By setting three configuration bits over the JTAG
TAP interface and then releasing the MAXQ2000 from reset, control can be transferred to the
built-in bootloader routines located in the utility ROM. The configuration bits that control access
to the bootloader are as follows.

• SPE: System Program Enable Bit (ICDF.1). When this bit is set to 1, the MAXQ2000 executes
the bootloader routine in the utility ROM following system reset.

• PSS[1:0]: Programming Source Select (ICDF.3-2). The settings of these bits determine
whether the JTAG port (PSS[1:0] == 00b) or the serial 0 UART (PSS[1:0] == 01b) is used for
bootloader communication.

Once these bits are set and the MAXQ2000 is released from reset, the utility ROM bootloader
begins communicating with the host system over the selected port (JTAG or serial 0 UART). In
either case, the protocol used is the same and provides the following functions.

• Reads the ID banner of the MAXQ2000 (identifies utility ROM version).

• Returns the size of internal program and data memory.

• Reads, writes, verifies, and CRCs the integrated flash program memory.

• Reads, writes, verifies, and CRCs the internal data SRAM.

• Password matches (to unlock memory read and write commands).

While the bootloader can communicate over the serial 0 UART instead of the JTAG port, the
JTAG interface must be used to place the bootloader into serial communications mode. However,
the application software can also invoke the bootloader in serial communications mode by setting
the SPE and PSS bits appropriately, then resetting the MAXQ2000 (by letting the watchdog timer
expire or by external hardware means). The method for causing the bootloader to be invoked (such
as a signal on a port pin) must be determined by the application software.

A hardware debug
engine, which is tightly
integrated with the
microcontroller core,
controls the MAXQ2000’s
debugging features.

By setting three
configuration bits over
the JTAG TAP interface
and then releasing the
MAXQ2000 from reset,
control can be trans-
ferred to the built-in
bootloader routines
located in the utility
ROM.

6

Password protection for debug and bootloader functions

A basic password-protection scheme restricts access to the debugging and bootloader functions
on the MAXQ2000. This password must be provided by the host system before access is allowed
to any functions that read or modify the contents of memory or system and peripheral registers.

The password is 16 words or 32 bytes long. The value for the password is located in the internal flash
memory at word locations 0x0010 to 0x001F. These values can be included in an application as a
static array, or they can simply be the values of the instruction codes stored in those locations. Either
way, the password is automatically written when the application is loaded. If no application has been
loaded, the password will be a default value with all words equal to 0xFFFF.

Even if the password is not known, the MAXQ2000’s internal flash memory can always be
erased through the bootloader. This effectively clears the password value (to all 0xFFFF words)
and allows other programming and debugging operations to proceed. The password protection
simply ensures that existing code may not be read from the MAXQ2000 without first matching
the 32-byte password value.

Using the serial-to-JTAG adapter module

Integrated development environments for the MAXQ2000 microcontroller (such as MAXIDE
and IAR Embedded Workbench) include software libraries to support communication with the
MAXQ2000 JTAG interface. However, as the PCs running this software do not typically have
JTAG ports included, a hardware layer is needed to interface the two systems.

The serial-to-JTAG adapter module, included with the MAXQ2000 Evaluation Kit, provides a
turnkey solution to this interface problem (Figure 1). Software running on the PC (such as IAR
Embedded Workbench) communicates with the serial-to-JTAG adapter module over a standard
COM serial port. The serial-to-JTAG adapter module then interfaces to the JTAG port of the
MAXQ2000, passing commands to the bootloader or the debugging engine. The adapter module
also handles level translation and supports MAXQ microcontrollers running over a range of
different supply voltages, as well as removes the need for the PC to provide precise timing for
the JTAG waveforms.

Using the MAXQ2000 Evaluation Kit hardware

The MAXQ2000 Evaluation Kit provides a complete hardware development environment for the
MAXQ2000 microcontroller, including the following features.

• On-board power supplies for the MAXQ2000 core and VDDIO supply rails.

• Adjustable power supply (1.8V to 3.6V), which can be used for the VDDIO or VLCD
supply rails.

• Header pins for all MAXQ2000 signals and supply voltages.

• Separate LCD daughterboard connector.

• LCD daughterboard with 3V, 3.5-digit static LCD display.

A basic password-
protection scheme
restricts access to the
debugging and
bootloader functions
on the MAXQ2000.

WINDOWS
PC

RS-232
INTERFACE

SERIAL
(COM)
PORT

JTAG TAP
INTERFACE

TEST MODE SELECT

TEST CLOCK

TEST DATA IN

TEST DATA OUT

SERIAL-TO-JTAG
INTERFACE
ADAPTER

MAXQ2000

Figure 1. The serial-to-
JTAG adapter module
allows software running on
the PC to access the JTAG
TAP interface of the
MAXQ2000 microcontroller.

7

• Full RS-232 level drivers for serial 0 UART including flow control lines.

• Pushbuttons for external interrupts and microcontroller system reset.

• MAX1407 multipurpose ADC/DAC IC, connected to the MAXQ2000 SPI bus interface.

• 1-Wire® interface, including iButton® clip and 1-Wire EEPROM IC.

• Bar graph LED display for levels at port pins P0.7 to P0.0.

• JTAG interface for application load and in-system debugging.

Setting the MAXQ2000 Evaluation Kit board and the serial-to-TJAG interface modules for
application development is straightforward. Simply connect the boards by the following steps.

1) Plug a 5V DC-regulated power supply (center post positive, ±5%) into the serial-to-JTAG
board power jack J2.

2) Plug a 5V to 9V DC power supply into the MAXQ2000 Evaluation Kit board power jack J1.

3) Connect a straight-through DB9 serial cable from the serial-to-JTAG board J1 connector to
one of the COM ports on the PC.

4) Connect the JTAG adapter cable from the 1 x 9 connector P2 on the serial-to-JTAG board to
the 2 x 6 connector J4 on the MAXQ2000 Evaluation Kit board.

5) Turn both DC power supplies ON.

6) For standard operation, all DIP switches on the MAXQ2000 Evaluation Kit board should be
in the OFF position.

Application development using IAR Embedded Workbench

The IAR Embedded Workbench development environment provides C-based or assembly-based
application development for the MAXQ2000. Using the previous hardware configuration that
includes the MAXQ2000 Evaluation Kit board and the serial-to-JTAG adapter module, IAR
Embedded Workbench has full access to the JTAG-based bootloader and in-circuit debugging
features of the MAXQ2000.

IAR Embedded Workbench provides the following features when developing applications for the
MAXQ2000.

• Load compiled applications to the MAXQ2000 integrated program-flash memory.

• Step-by-step (trace) program execution at the C or assembly level.

• Display of code, data, hardware stack, and utility ROM memory.

• Call stack tracing.

• Breakpoint setting at the C or assembly level.

• View and edit of all MAXQ2000 system and peripheral registers.

Creating and compiling a project for the MAXQ2000

Because IAR Embedded Workbench includes integrated support for the MAXQ
microcontroller family, creating a new project for the MAXQ2000 microcontroller requires
only a few specific settings.

After starting IAR, select File, then New from the menu. Select Workspace from the New dialog box
and click Ok. Enter a new name for the project workspace (stored as a “.eww” file) and click Save.

With the combination of
the MAXQ2000
Evaluation Kit and the
serial-to-JTAG adapter
module, IAR Embedded
Workbench has full
access to the JTAG-
based bootloader and
in-circuit debugging
features of the
MAXQ2000.

The IAR Embedded
Workbench development
environment provides
C-based or assembly-
based application
development for the
MAXQ2000.

8

Once the workspace window opens, select
Project, then Create New Project from the
menu. The MAXQ tool chain is the default for
the new project. Enter a file name for the new
project (stored as a *.ewp file) and click Create.

Next, select Project, then Settings from the menu.
A dialog box will appear with the settings for the
newly created project, as shown in Figure 2.

In the General Options tab of the Options dialog
box, the following settings should be selected for
the MAXQ2000 microcontroller.

• Processor Variant should be set to MAXQ20,
as the MAXQ2000 has a MAXQ20-type core.

• Number of accumulators should be set to 16
for the MAXQ2000.

• Hardware stack depth should be set to 16 for
the MAXQ2000.

In the C-SPY Debugger tab of the Options dialog box, the following settings should be selected
for the MAXQ2000 (Figure 3):

• Set the Driver setting to JTAG to connect to the serial-to-JTAG interface board over a PC
COM port. The other two possible settings are Simulator (used to run with the MAXQ2000
software simulator) and Emulator (used to run with the MAXQ2000 In-Circuit Emulator
system).

• The Use Device Description File box should
be checked. The device description file (*.ddf)
should be the file provided for the MAXQ2000
microcontroller (maxq200x.ddf). This file
defines the memory spaces and peripheral
register set for a particular MAXQ micro-
controller for use by the IAR environment.

Under the JTAG section of the Options dialog
box, the Command line options field contains
the COM port of the PC used to connect to the
serial-to-JTAG board. Figure 4 shows the option
setting for connecting to COM port 1.

After setting the options for the project, select
Project, then Add Files to add a C code file to
the project. Once the project file(s) have been
added, select Project, then Make to compile the
project, followed by Project, then Debug to start
a debugging session. This downloads the
compiled project over the JTAG interface and
places IAR into debug mode, as Figure 5 shows.

Debugging operations in IAR

Once the debugging session has started, Step Over (F10), Step Into (F11), and Step Out
(Shift+F11) can be used to trace through the C code of the project. To run code, select Debug,
then Go from the menu, or hit F5.

Figure 2. The General
Options section of the
Options dialog allows the
user to specify the
processor core type
(MAXQ10/20), the number
of accumulators available,
and the hardware stack
depth. The settings shown
are for the MAXQ2000.

Figure 3. The C-SPY
Debugger section of the
Options dialog allows the
user to specify settings for
debugging sessions. The
settings shown are for
debugging the MAXQ2000
using the serial-to-JTAG
adapter module.

Address breakpoints can be set or cleared by placing
the cursor on a line of source code and clicking the
Toggle Breakpoint button in the toolbar. Up to four
address breakpoints can be set at once.

The Memory window can be used to display the
Code (internal flash memory), Data (internal
SRAM), Hw stack (internal 16-level stack), and
utility ROM memories of the MAXQ2000. The
memory display can be set to byte, word, or
doubleword format, and displays in both hex (for all
widths) and ASCII (for byte width) formats.

The Register window displays the system and
peripheral registers for the MAXQ2000. These are
displayed in logical groups.

• CPU Registers: Accumulator and accumulator
control registers, data pointers and data pointer
control registers, instruction pointer, loop
counter, and program status flags.

• Interrupt Control: Interrupt vector, module mask, and identification registers.

• Cycles: Displays the number of instruction cycles that have executed.

• Parallel Ports: Input, output, and port direction registers for P0 to P4.

• External Interrupt: Enable, edge select, and flag registers for external interrupts.

• Timers: Registers for timer/counters 0 to 2.

• Serial Port: Control and buffer registers for the
SPI and serial ports.

• Multiplier: Registers related to the hardware
multiplier module.

Writeable registers can be edited by clicking on the
register value and entering a new value. Display of
the individual bits or bit fields within registers can
be expanded or collapsed by clicking the
plus/minus sign next to the register name.

Conclusion

The high-level, C-project-based environment of
IAR Embedded Workbench integrates with the
MAXQ2000’s low-level debugging interface to
allow fine-tuned debugging at either the C or
assembly code levels. The MAXQ2000’s built-in
debugging and in-circuit programming features, and
their low-level impact on system resources, allow the same hardware design to be used for
both the application development process and for the final release of the finished project.

1-Wire and iButton are registered trademarks of Dallas Semiconductor.

9

Figure 5. Using the
serial-to-JTAG adapter
module, IAR Embedded
Workbench can perform
step-by-step execution on
the MAXQ2000, as well as
read and modify on-chip
memory and register
values.

Figure 4. The C-SPY
Debugger (JTAG) section
of the Options dialog
allows the user to change
settings specific to the
serial-to-JTAG adapter
module. The settings
shown are for a serial-to-
JTAG adapter connected
to the PC port COM1.

10

Accessing the functions provided in
the MAXQ utility ROM
Using lookup tables within the application code is a common programming practice when
working with microcontrollers. Because of the single-cycle nature of the MAXQ core,
application software cannot read directly from code space and, therefore, cannot directly access
any tables defined within the application code. To alleviate this issue, all MAXQ utility ROMs
include routines for accessing data and tables stored in the program space. In addition to these
core functions, the ROM for each MAXQ variation may have routines specific to that part.
Because these functions might be located anywhere within the ROM, and could move with each
revision of a ROM, a standard technique was developed for accessing the routines. This allows
code written for one version of the ROM to be reused with all subsequent revisions without
needing to rewrite or recompile the code.

For all variants of the MAXQ processor, the utility ROM has a table with addresses for each of
its supported functions. The location of this table can vary from part to part, so a pointer to this
table is always stored at address 800Dh. The addresses for the supported functions can then be
found by indexing into the table. This table always maintains the same order for the functions
throughout all revisions of a particular ROM. Table 1 lists the MAXQ2000 functions and their
entry point within the table.

Executing a utility ROM function requires four steps. Firstly, retrieve the location of the function
table from address 800Dh. Secondly, add the offset for the desired function. Thirdly, retrieve the
address of the utility function by reading from the computed location. Finally, execute the
function by performing a call to the location found in the table. The following MAXQ assembly
function demonstrates these four steps, using the moveDP1inc function of the MAXQ2000 as
an example.

FUNCTION
NUMBER

FUNCTION
NAME

ENTRY POINT
(USERTABLE = ROM[800Dh])

0 Reserved ROM[userTable + 0]
1 Reserved ROM[userTable + 1]
2 Reserved ROM[userTable + 2]
3 moveDP0 ROM[userTable + 3]
4 moveDP0inc ROM[userTable + 4]
5 moveDP0dec ROM[userTable + 5]
6 moveDP1 ROM[userTable + 6]
7 moveDP1inc ROM[userTable + 7]
8 moveDP1dec ROM[userTable + 8]
9 moveFP ROM[userTable + 9]
10 moveFPinc ROM[userTable + 10]
11 moveFPdec ROM[userTable + 11]
12 copyBuffer ROM[userTable + 12]

Table 1. MAXQ2000 Utility ROM User-Function Table

All MAXQ utility ROMs
include routines for
accessing data and
tables stored in the
program space.

11

;;;

;; Function: ReadDataAtDP1

;; Description: This function uses the utility ROM function “moveDP1inc”

;; to read from program memory the data stored at the

;; address in DP[1]. If DP[1] is in word mode two

;; bytes will be read. If DP[1] is in byte mode only

;; one byte is read. DP[1] is then post incremented.

;; Returns: The result is returned in GR.

;; Destroys: ACC and DP[0]

;; Notes: This function assumes that DP[0] is set to word

;; mode and the device has 16-bit accumulators.

;;;

ReadDataAtDP1:

move DP[0], #0800Dh ; This is where the address of the table is stored.

move ACC, @DP[0] ; Get the location of the function table.

add #7 ; Add the index to the moveDP1inc function.

move DP[0], ACC ; Point to where the address of moveDP1 is stored.

move ACC, @DP[0] ; Retrieve the address of the function.

call ACC ; Execute the function.

ret

Because future ROM versions of a particular MAXQ variant might place the utility functions
in a different location, using a routine similar to the ReadDataAtDP1 function guarantees
forward compatibility. The “cost” of this compatibility is larger code size and longer execution
times. In some cases, these tradeoffs might be unacceptable, making it worthwhile to call the
utility ROM functions directly. To call a utility function directly, simply determine the location
of the desired function and use this location as the destination of a call.

Reading a string defined in code space illustrates a common situation requiring the use of
utility functions. A programmer might store error strings, informational strings, or even debug
strings that get displayed during execution of an application. The code segment below shows
one way of achieving this using the ReadDataAtDP1 function as previously described.

Text:

DB “Hello World!”,0 ; Define a string in code space.

;;;

;; Function: PrintText

;; Description: Prints the string stored at the “Text” label.

;; Returns: N/A

;; Destroys: ACC, DP[1], DP[0], and GR.

;; Notes: This function assumes that DP[0] is set to word mode,

;; DP[1] is in byte mode, and the device has 16-bit

;; accumulators.

;;;

PrintText:

move DP[1], #Text ; Point to the string to display.

move ACC, DP[1] ; “Text” is a word address and we need a

sla ; byte address, so shift left 1 bit.

or #08000h ; Code space is mapped to 8000h when running

move DP[1], ACC ; from the ROM, so the address must be masked.

PrintText_Loop:

call ReadDataAtDP1 ; Fetch the byte from code space.

move ACC, GR

jump Z, PrintText_Done ; Reached the null terminator.

call PrintChar ; Call a routine to output the char in ACC

jump PrintText_Loop ; Process the next byte.

PrintText_Done:

ret

Having a common way
of accessing utility ROM
routines also allows
developers to write
code that will work
with all variants of a
particular MAXQ
processor.

Conclusion

Utility functions give developers an easy way to read data stored in program memory. Having a
common way of accessing utility ROM routines also allows developers to write code that will
work with all variants of a particular MAXQ processor. Libraries can be constructed once and
then reused, eliminating concern that future ROM versions will not be compatible.

12

13

An example application using the
MAXQ2000 Evaluation Kit
The availability of standard ANSI C tools and development environments that integrate these tools
significantly eases application development for new or unfamiliar processors. The tools available for
the MAXQ line of processors include IAR’s ANSI C compiler and the IAR Embedded Workbench
integrated-development environment. With these programs and a basic knowledge of the MAXQ
special-purpose registers, a developer can quickly and easily begin writing applications for the
MAXQ architecture. The easiest way to demonstrate how simple the development process can be on
the MAXQ architecture is with an example application.

The application described here uses the MAXQ2000 processor and the MAXQ2000 Evaluation
Kit. The MAXQ2000 has a wide range of integrated peripherals, including:

• 132-segment LCD controller

• Integrated SPI port with master and slave modes

• 1-Wire Bus Master

• Two serial UARTs

• Hardware multiplier

• Three 16-bit timers/counters

• Watchdog timer

• 32-bit real-time clock with subsecond and time-of-day alarms

• JTAG interface with support for in-circuit debugging

Application overview

This example showcases the uses of the LCD controller, the master mode of the SPI port, one of the
UARTs, the hardware multiplier, and one of the timers. The timer is used to generate periodic
interrupts. When an interrupt occurs, the MAXQ2000 takes a temperature reading and outputs the
results to an LCD and one of its serial ports. The SPI port interfaces with the MAX1407 data-
acquisition system (DAS), which contains an ADC. Temperature readings are then taken by
connecting a thermistor to the MAX1407’s ADC.

Using the LCD controller

To use the LCD, two control registers must be configured. Once these registers have been set,
segments on the LCD can be turned on by setting a bit in one of the LCD data registers. The
following code shows how the LCD controller is configured for the example application.

void initLCD()

{

LCRA_bit.FRM = 7; // Set up frame frequency.

LCRA_bit.LCCS = 1; // Set clock source to HFClk / 128.

LCRA_bit.DUTY = 0; // Set up static duty cycle.

LCRA_bit.LRA = 0; // Set R-adj to 0.

LCRA_bit.LRIGC = 1; // Select external LCD drive power.

LCFG_bit.PCF = 0x0F;// Set up all segments as outputs.

LCFG_bit.OPM = 1; // Set to normal operation mode.

LCFG_bit.DPE = 1; // Enable display.

}

The availability of
standard ANSI C tools
and development
environments that
integrate these tools
significantly eases
application develop-
ment for new or
unfamiliar processors.

Communicating over SPI

Three registers control the various SPI modes supported by the MAXQ2000. To communicate
with the MAX1407, the following code is used to initialize the SPI component and place it in the
correct mode.

PD5 |= 0x070; // Set CS, SCLK, and DOUT pins as output.

PD5 &= ~0x080; // Set DIN pin as input.

SPICK = 0x10; // Configure SPI for rising edge, sample input

SPICF = 0x00; // on inactive edge, 8 bit, divide by 16.

SPICN_bit.MSTM = 1; // Set Q2000 as the master.

SPICN_bit.SPIEN = 1; // Enable SPI.

Once the SPI configuration registers have been set, the SPIB register is used to send and receive
data. Writing to this register initiates the two-way communication between the SPI master and
slave. The STBY bit in the SPICN register signals when the transfer is complete. The SPI send-
and-receive code is shown below.

unsigned int sendSPI(unsigned int spib)

{

SPIB = spib; // Load the data to send

while(SPICN_bit.STBY); // Loop until the data has been sent.

SPICN_bit.SPIC = 0; // Clear the SPI transfer complete flag.

return SPIB;

}

Writing to a serial port

In the example application, one of the MAXQ2000’s serial ports is used to output the current
temperature reading. Before any data can be written to the port, the application must set the baud
rate and the serial port mode. Again, just a few registers need to be initialized to enable serial
port communications.

void initSerial()

{

SCON0_bit.SM1 = 1; // Set to Mode 1.

SCON0_bit.REN = 1; // Enable receives.

SMD0_bit.SMOD = 1; // Set baud rate to 16 times the baud clock.

PR0 = 0x3AFB; // Set phase for 115200 with a 16MHz crystal.

SCON0_bit.TI = 0; // Clear the transmit flag.

SBUF0 = 0x0D; // Send carriage return to start communication.

}

As with the SPI communication routines, a single register sends and receives serial data. Writing
to the SBUF0 register will initiate a transfer. When data becomes available on the serial port,
reading the SBUF0 register will retrieve the input. The following function is used in the example
program to output data to the serial port.

int putchar(int ch)

{

while(SCON0_bit.TI == 0); // Wait until we can send.

SCON0_bit.TI = 0; // Clear the sent flag.

SBUF0 = ch; // Send the char.

return ch;

}

14

Writing to the SPIB
register initiates the
two-way communi-
cation between the SPI
master and slave.

For the MAXQ
architecture, interrupts
must be enabled on
three levels: globally,
for each module, and
locally.

15

Generating periodic interrupts with a timer

The last component used in this example application is one of the 16-bit timers. The timer
generates interrupts that trigger temperature readings twice a second. To configure the timer for
this example, the programmer must set the reload value, specify the clock source, and start the
timer. The following code shows the steps required for initializing timer 0.

T2V0 = 0x00000; // Set current timer value.

T2R0 = 0x00BDC; // Set reload value.

T2CFG0_bit.T2DIV = 7; // Set div 128 mode.

T2CNA0_bit.TR2 = 1; // Start the timer.

Using this timer as an interrupt source like the example requires a few more steps. For the
MAXQ architecture, interrupts must be enabled on three levels: globally, for each module, and
locally. Using IAR’s compiler, enable global interrupts by calling the __enable_interrupt()
function. This effectively sets the Interrupt Global Enable (IGE) bit of the Interrupt and Control
(IC) register. Since timer 0 is located in module 3, set bit 3 of the Interrupt Mask Register (IMR)
to enable interrupts for the module. Enable the local interrupt by setting the Enable Timer
Interrupts (ET2) bit in Timer/Counter 2 Control Register A (T2CNA). These steps, as executed
in the example application, are shown below.

__enable_interrupt()

T2CNA0_bit.ET2 = 1; // Enable interrupts.

IMR |= 0x08; // Enable the interrupts for module 3.

Finally, using an interrupt requires initializing the interrupt vector. IAR’s compiler allows a
different interrupt handling function for each module. Setting the interrupt handler for a
particular module requires using the #pragma vector directive. The interrupt-handling function
declaration should also be preceded by the __interrupt keyword. The example application
declares an interrupt handler for module three in the following way.

#pragma vector = 3

__interrupt void timerInterrupt()

{

// Add interrupt handler here.

}

Conclusion

As these code samples illustrate, learning the details of a few peripheral registers enables
programmers to easily develop applications for the MAXQ2000 processor and the MAXQ line
of processors. The addition of IAR’s Embedded Workbench speeds up the development process
by allowing code to be written in ANSI-compliant C code.

The complete source code for this sample application can be downloaded at www.maxim-
ic.com/MAXQ_code. Read the description and comments found at the beginning of the code for
details on the required wiring and setup. For more details on using IAR’s Embedded Workbench,
refer to the second article in this publication entitled, “Programming in the MAXQ Environment.”

Programmers can easily
develop applications for
MAXQ processors after
learning the details of a
few peripheral
registers.

Signal processing with the MAXQ
multiply-accumulate unit (MAC)
Traditional microcontrollers and digital signal processors (DSPs) are sometimes viewed as standing
at opposite ends of the microcomputer spectrum. While microcontrollers are best suited for control
applications that require low-latency response to unsynchronized events, DSPs shine in applications
where intense mathematical calculations are required. A microcontroller can be used in heavy
arithmetic applications, but the one-operation-at-a-time nature of most microcontroller ALUs makes
such use less than optimal. Similarly, a DSP can be forced into a control application, but the internal
architecture of most DSPs render this operation inefficient in both code and time.

Choosing a DSP or a traditional microcontroller becomes more difficult when a mostly control-
oriented application requires a small amount of signal processing. In such applications, it is tempting
to squeeze the DSP code into the microcontroller. However, the designer often finds that the
application spends most time performing DSP functions, thus making the control application suffer.

This dichotomy can be resolved in modern processor architectures, such as the MAXQ
architecture. In the modular MAXQ architecture, a multiply-accumulate unit (MAC) can be
added to the design and integrated into the architecture with ease. With the hardware MAC,
16 x 16 multiply-accumulate operations occur in one cycle without compromising the
application running on the control processor. This article provides some examples of how the
MAC module in a typical MAXQ microcontroller can be used to solve such real-world problems.

Using the MAC module with a MAXQ

A common application for DSPs is filtering some analog signal. In this application, a properly
conditioned analog signal is presented to an ADC, and the resulting stream of samples is filtered in
the digital domain. A general filter implementation can be realized by the following equation:

y[n] = ∑bix[n-i] + ∑aiy[n-i]

where bi and ai characterize the feedforward and feedback response of the system, respectively.

Depending on the values of ai and bi, digital filters can be classified into two broad categories:
finite impulse response (FIR) and infinite impulse response (IIR). When a system does not
contain any feedback elements (all ai = 0), the filter is said to be of the FIR type:

y[n] = ∑bix[n-i]

However, when elements of both ai and bi are non-zero, the system is an IIR filter.

As can be seen from the above equation for an FIR filter, the main mathematical operation is to
multiply each input sample by a constant, and then accumulate each of the products over the n
values. The following C fragment illustrates this:

y[n]=0;

for(i=0; i<n; i++)

y[n] += x[i] * b[i];

For a microprocessor with a multiplier unit, this can be achieved according to the following
pseudo-assembler code:

move ptr0, #x ;Primary data pointer -> samples

move ptr1, #b ;Secondary DP -> coefficients

move ctr, #n ;Loop counter gets number of samples

move result, #0 ;Clear result register

In the modular MAXQ
architecture, a single-
cycle multiply-
accumulate (MAC) unit is
incorporated to facilitate
operation required for a
typical signal-processing
technique.

16

17

ACC_LOOP:

move acc, @ptr0 ;Get a sample

mul @ptr1 ;Multiply by coefficient

add result ;Add to previous result

move result, acc ;...and save the result back

inc ptr0 ;Point to next sample

inc ptr1 ;Point to next coefficient

dec ctr ;Decrement loop counter

jump nz, ACC_LOOP ;Jump if there are more samples

end

Thus, even with a multiplier, the multiply and accumulate loop requires 12 instructions and
(assuming a one-cycle execution unit and multiplier) 4 + 8n cycles.

The MAXQ multiplier is a true multiply-accumulate unit. Performing the same operation in the
MAXQ architecture shrinks code space from 12 words to 9 words, and execution time is reduced
to 4 + 5n cycles.

move DP[0], #x ; DP[0] -> x[0]

move DP[1], #b ; DP[1] -> b[0]

move LC[0], #loop_cnt ; LC[0] -> number of samples

move MCNT, #INIT_MAC ; Initialize MAC unit

MAC_LOOP:

move DP[0], DP[0] ; Activate DP[0]

move MA, @DP[0]++ ; Get sample into MAC

move DP[1], DP[1] ; Activate DP[1]

move MB, @DP[1]++ ; Get coeff into MAC and multiply

djnz LC[0], MAC_LOOP

Note that in the MAXQ multiply-accumulate unit, the requested operation occurs automatically
when the second operand is loaded into the unit. The result is stored in the MC register. Note
also that the MC register is 40 bits long, and thus can accumulate a large number of 32-bit
multiply results before overflow. This improves on the traditional approach where overflow
must be tested after every atomic operation. To illustrate how the MAC can be used efficiently
in the signal-processing flow, we present a simple application for a dual-tone multi-frequency
(DTMF) transceiver.

DTMF overview

DTMF is a signaling technique used in the telephone network to convey address information
from a network terminal (a telephone or other device) to a switch. The mechanism uses two sets
of four discrete tones that are not harmonically related, i.e., the “low group” (less than 1kHz) and
the “high group” (greater than 1kHz). Each digit on the telephone keypad is represented by
exactly one tone from the low group and one tone from the high group. See Figure 1 to learn
how the tones are allocated.

DTMF tone encoder

The encoder portion of the DTMF transceiver is relatively straightforward. Two digital sine-
wave oscillators are required, each of which can be tuned to one of the four low-group or high-
group frequencies.

There are several ways to resolve the issue of digitally synthesizing a sine wave. One method of
sine-wave generation avoids the issue of digital synthesis altogether. Instead, it just strongly filters
a square wave produced on a port pin. While this method works in many applications, Bellcore
requirements dictate that the spectral purity of the sine waves be higher than can be achieved using
this technique.

The dual-tone multi-
frequency (DTMF)
signaling technique used
in the telephone
network conveys
address information
from a network terminal
(telephone or other
device) to a switch.

...in the MAXQ multiply-
accumulate unit, the
requested operation
occurs automatically
when the second
operand is loaded into
the unit.

18

A second method of generating sinusoidal waveforms is the table-lookup
method. In this method, one-quarter of a sine wave is stored in a ROM table, and
the table is sampled at a precomputed interval to create the desired waveform.
Creating a quarter-sine table of sufficiently high resolution to meet spectral
requirements would, however, require a significant amount of storage.
Fortunately, there is a better way.

A recursive digital resonator1 can be used to generate the sinusoids (Figure 2).
The resonator is implemented as a two-pole filter described by the following
difference equation:

Xn = k * Xn-1 – Xn-2

where k is a constant defined as

k = 2 cos(2π * toneFrequency / samplingRate)

Because only a small number of tones are needed in a DTMF dialer,
the eight values of k can be precomputed and stored in ROM. For
example, the constant required to produce a Column 1 tone (770Hz) at
a sample rate of 8kHz is:

k = 2 cos(2π * 770 / 8000) = 2 cos(0.60) = 1.65

One more value must be calculated: the initial impulse required to make the
oscillator begin running. Clearly, if Xn-1 and Xn-2 are both zero, every
succeeding Xn will be zero. To start the oscillator, set Xn-1 to zero and set
Xn-2 to

Xn-2 = -A * sin(2π * toneFrequency / samplingRate)

In our example, assuming a unit sine wave is desired, this reduces to:

Xn-2 = -1 * sin(2π * 770 / 8000) = -sin(0.60) = -0.57

Reducing this to code is simple: first, two intermediate variables (X1, X2) are
initialized. X1 is initialized to zero, while X2 is loaded with the initial
excitation value (calculated above) to start the oscillation. To generate one
sample of the sinusoid, perform the following operation:

X0 = k * X1 – X2
X2 = X1
X1 = X0

Each new sine value is calculated using one multiplication and one subtraction. With a single-cycle
hardware MAC on the MAXQ microcontroller, the sine wave can be generated as follows:

move DP[0], #X1 ; DP[0] -> X1

move MCNT, #INIT_MAC ; Initialize MAC unit

move MA, #k ; MA = k

move MB, @DP[0]++ ; MB = X1, MC=k*X1, point to X2

move MA, #-1 ; MA = -1

move MB, @DP[0]-- ; MB = X2, MC=k*X1-X2, point to X1

nop ; wait for result

move @--DP[0], MC ; Store result at X0

The MAXQ microcon-
troller, together with its
MAC unit, is bridging
the gap between the
traditional microcon-
troller and the digital
signal processor.

1 2 3 A

4 5 6 B

7 8 9 C

* 0 # D

1209Hz 1633Hz1477Hz1336Hz

697Hz

770Hz

852Hz

941Hz

HIGH-FREQUENCY GROUP
LO

W
-F

RE
QU

EN
CY

 G
RO

UP

SINE WAVE - 770Hz

-1.0

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1.0

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
x10-3

Figure 1. Combining one
frequency from the high-
frequency group and one
from the low-frequency
group generates a DTMF
signal.

Figure 2. A recursive
resonator generates the
sine wave.

19

DTMF tone detection

Because only a small number of frequencies are to be detected, the modified
Goertzel algorithm2 is used. This algorithm is more efficient than the general
DFT mechanisms and provides reliable detection of inband signals. It can be
implemented as a simple second-order filter following the format in Figure 3.

To use the Goertzel algorithm to detect a tone of a particular frequency, a
constant must first be precomputed. For a DTMF detector, this can be done at
compile time. All the tone frequencies are well specified. The constant is
computed from the following formula:

k = toneFrequency / samplingRate
a1 = 2cos(2πk)

First, three intermediate variables (D0, D1, and D2) are initialized to zero. Now,
for each sample X received, perform the following:

D0 = X + a1 * D1 – D2
D2 = D1
D1 = D0

After a sufficient number of samples has been received (usually 205 if the
sample rate is 8kHz), compute the following using the latest computed values
of D1 and D2:

P = D12 + D22 - a1 * D1 * D2

P now contains a measure of the squared power of the test frequency in the input
signal. To decode full four-column DTMF, each sample will be processed by
eight filters. Each filter will have its own k value, and its own set of intermediate
variables. Since each variable is 16 bits, the entire algorithm will require 48
bytes of intermediate storage.

Once the P values for various tone frequencies are calculated, one tone in the
high and low groups will have values significantly higher than all the other
tones, which means more than twice as high, often more than an order of
magnitude. Figure 4 shows a sample input signal to the decoder, and Figure 5
illustrates the result of the Goertzel algorithm. If the signal spectrum does not
meet this criterion, it either means that no DTMF energy is present in the signal,
or that there is sufficient noise to block the signal.

A spreadsheet that demonstrates this algorithm is available on our website, as
well as sample code for the MAC-equipped MAXQ processor. Go to
www.maxim-ic.com/MAXQ_DTMF.

Conclusion

The MAXQ microcontroller, together with its MAC, is bridging the gap between
the traditional microcontroller and the digital signal processor. With the addition of
a hardware MAC, the MAXQ microcontroller offers a new level of signal-
processing capability to the 16-bit microcontroller market not previously available.
Real-time signal processing is made possible with a single-cycle MAC that
provides the functions most often required in real-world applications.

1 Todd Hodes, John Hauser, Adrian Freed, John Wawrzynek, and David Wessel. Proceedings of the IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP-99, March 15–19, 1999), pp. 993–996.
2 Alan Oppenheim and Ronald Schafer, Discrete-Time Signal Processing. Prentice Hall.

z -1

z -1

-1

-e-j2
k/N

a
1

X PD0

D2

D1

+ +

SAMPLE INPUT WAVEFORM - 852Hz AND 1336Hz

100

50

0

-50

-100

0 20 40 60 80 100 120 140 160 180 200

Figure 3. The Goertzel
algorithm is implemented
as a second-order filter.

MAGNITUDE OF DETECTED FREQUENCY
7000

6000

5000

4000

3000

2000

1000

0
697 770 852 941 1209

FREQUENCY

1336 1477 1633

Figure 4. This is the
sample input waveform for
the DTMF decoder.

Figure 5. The DTMF
decoder detects the
magnitude of various
frequencies.

www.maxim-ic.com
Maxim Integrated Products, Inc.
120 San Gabriel Drive
Sunnyvale, CA 94086

FREE SAMPLES AND
TECHNICAL INFORMATION

FAX: 408-222-1770
www.maxim-ic.com/samples

Please send me a sample of:

Request free information about Maxim and our products.

❒ Please send me Future Issues of the Maxim Engineering Journal.

Please complete the information below.

Name __________________________________ Title __________________________________

Company ________________________________ Department __________________________

Address __

City ____________________________________ State/Province ________________________

Zip Code ________________________________ Country ______________________________

Telephone________________________________

E-mail Address ___

My application is ________________________ My end product is ________________________

(Limit is 8 part numbers, 2 samples each.)

MER4 9/04

Contact us at 1-800-998-8800 (Toll Free)
www.maxim-ic.com/samples

Presorted Standard
U.S. Postage

PAID
St. Joseph, MI
Permit No. 126

1-Wire® Products

Battery Management

Interface

Fiber Cable

A/D Converters
Audio

Cellular/PCS Phones
Communications

Digital Potentiometers

Displays

D/A Converters

Flat-Panel Displays
High-Speed ADCs & DACs

High-Speed Microcontrollers

High-Speed Interconnect

Low-Power Notebook

µP Supervisors
Multiplexers and Switches
Op Amps and Comparators
Power Supplies
Real-Time Clocks
Signal Conditioners
System Timing and Control
Temperature Sensors
Video
Voltage References
Wireless

Request
Design Guides

from Our Library

